

Vannes à boules revêtue de PTFE/PFA

Vannes à boule revêtue de PTFE/PFA Aperçu

2

Vannes à boule revêtue de PFA Diamètre Pression nom. Page acier inox

"GYSI-GEFA" type FGT

DN 15 - 50 PN 10/16

Vannes à boule revêtue de PTFE/PFA

• Informations techniques

Sur demande

- · dimensions jusqu'à DN 300
- exécution selon norme ANSI
 exécution avec revêtement spéciale
- · avec entraînement pneumatique, électrique ou hydraulique

Vannes à boule revêtue de PFA, acier inox "GYSI-GEFA" type FGT

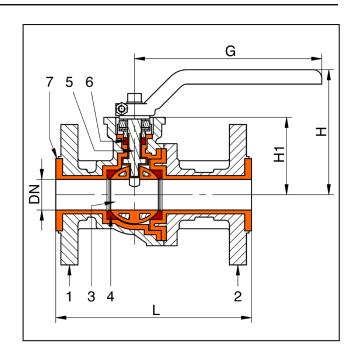
Texte de soumission

Robinet à boule "GYSI-GEFA" type FGT en acier inox avec revêtement PFA, avec conformité FDA, corps en deux parties, à passage intégrale, avec presse-étoupe sans entretien, suspendue et resserrable, avec bride de tête selon DIN ISO 5211, longueur selon EN 558-1, colonne 1 à brides selon EN 1092-1 avec levier à main PN 10/16, Art.-No. 2250

Limites d'utilisation pression/température

Application maximale selon EN 12516 Recommandé pur -10°C jusqu'à +150°C étendus -50°C jusqu'à +200°C sur demande

Domaine d'application


Produits chimiques et pharamacie autres d'applications sur demande

Certificats

- PED EN 2014/68/EU
- TA-Luft
- · Conforme à la norme FDA

Options disponibles sur demande

- différents joints en PTFE/Houille
- avec entraînement pneumatique, électrique ou hydraulique
- avec rallonge de l'axe de commande

Pos.	Description	Matières
1	Corps	1.4408/PFA
2	Raccord à bride	1.4408/PFA
3	Boule	1.4408/PFA
4	Element d'étancheité	PTFE
5	Axe de commande	1.4313/PFA
6	Presse-étoupe	PTFE
7	Revêtement	PFA

Dimensions

Article-No.	DN	PN	L	H1	Н	G	Bride de tête	Valeur Kv	Couple	Poids
		bar	mm	mm	mm	mm	ISO	m3/h	Nm	Kg
2250015	15	10/16	130	53	102	160	F04/F05	20	12	2.5
2250020	20	10/16	150	56	104	160	F04/F05	40	12	3.3
2250025	25	10/16	160	67	120	175	F04/F05	75	18	4.2
2250032	32	10/16	180	72	125	175	F04/F05	130	25	5.7
2250040	40	10/16	200	83	140	220	F05/F07	170	35	7.3
2250050	50	10/16	230	91	147	220	F05/F07	270	55	10.0

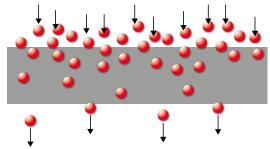
Veuillez noter: Les données Kv ont été établis avec de l'eau pour une différence de pression de 1 bar et une temperature de 5-30°C.

Instructions de montage et d'entretien

Doc.-No. 9250, instructions d'installation et d'entretien vannes à boule, "GYSI-GE"

Vannes et pièce de tuyauterie revêtue de PTFE/PFA

Informations techniques

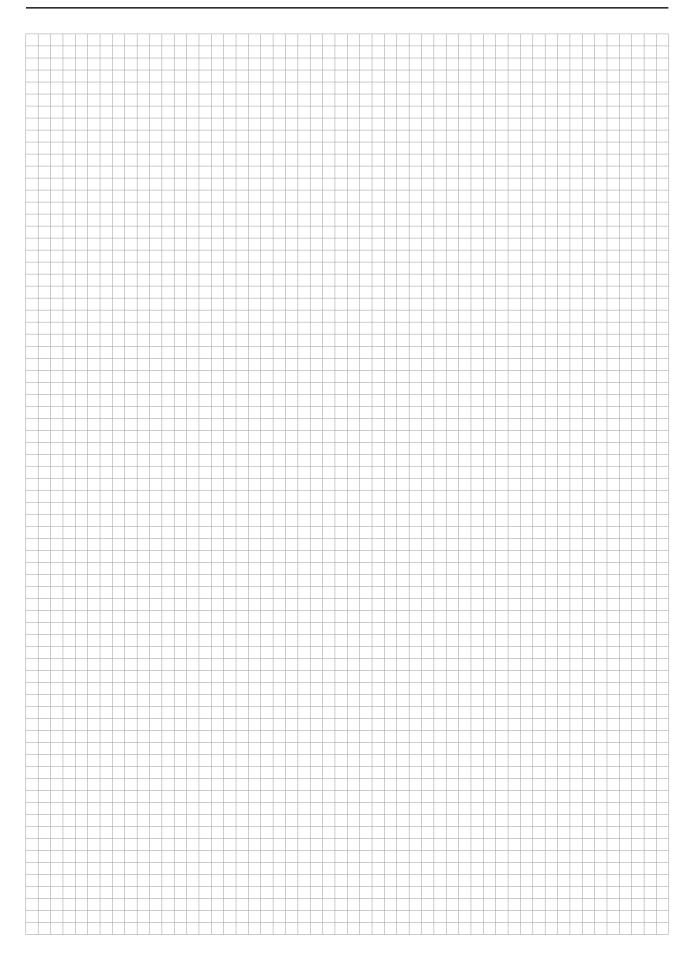

Caractéristiques de fluorpolymères

Mécanique	Unité	PTFE	PFA	FEP	PVDF
Densité		2.16	2.15	2.15	1.71
Résistance à la traction	MPa	24.5	27.4-31	27.7-31	44.8
Allongement	%	350	300	300	250-350
Module de flexion	MPa	490	655-690	655	1170-1380
Résistance à la flexion		10 x 10 ⁶	200000	80000	30000
Dureté	Shore	D-55	D-60	D-57	D-75
Coefficient de friction dyn.		0.1	0.2	0.2	0.4
Thermique					
Température de fusion	°C	327	305	260	270
Température max. d'utilisation	°C	260	260	205	155
Température de service	°C	200	200	150	110
Électrique					
Constante diélectrique	10 ³ -10 ⁶ Hz	2.1	2.1	2.1	2.6
Résistance de contact	Ohm * m	>10 ¹⁶	>1016	>1016	>1014
Résistance superficielle	W	>10 ¹⁶	>1017	>1016	>1014
Générale					
Résistance chimique		exellent	exellent	exellent	très bien
Absorption d'eau	%	0	0.03	0.01	0.03

Perméation - Pénétration d'une matière à travers un solide

La Perméation est un processus au cours duquel une matière pénètre à un niveau moléculaire un solide. Le processus se déroule en plusieurs étapes

- L'adsorption (la matière se fixe sur la surface)
- L'absorption (la matière est absorbée)
- La diffusion (la matière pénètre le solide par des pores ou par des espaces moléculaires)
- La désorption (après que les molécules ont pénétré le solide, diffusion vers l'extérieur de celle-ci)


Le degré de la perméation est considérablement influencé par le traitement du matériel de revêtement ou par les caractéristiques suivantes:

- La matériau brut a une influence sur la structure moléculaire, la densité et la teneur en vides.
- L'usinage a une influence sur la teneur en vides, la cristallinité, la température et la courbe de frittage.
- Plus l'épaisseur de paroi sélectionnée / épaisseur est faible, plus le degré de perméation.

Important:

Si la perméabilité est comparée avec différents fluor polymères, il est important que cette mesure soit effectuée sur les épaisseurs de parois de revêtements usuelles (min. 3 mm).

Nos brochures sur les robinetteries

KLINGER Gysi AG Bachstrasse 34, Postfach, CH-5034 Suhr

Secteur robinetterie industrielle T 062 855 00 00 zentrale@klinger-gysi.ch

Secteur Technique d'étanchéité T 062 855 00 10 sealing@klinger-gysi.ch

www.klinger-gysi.ch

Nous sommes un partenaire innovant. Nous vous proposons aussi un assortiment complet et un conseil clientèle performant dans les domaines suivant :

- joints d'étanchéités
- matière plastique fluorée

